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Surface-induced nematic order variation:
Intrinsic anchoring and subsurface director deformations
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The nematic orientation close to a solid substrate is investigated by means of a Landau–de Gennes phe-
nomenological model. We show that a spatial variation of the scalar order parameter induces a subsurface
variation of the average molecular orientation and an intrinsic contribution to the anchoring when the splay and
bend elastic constants are different from the twist elastic constant. A quasi-splay-bend elastic constant is
deduced by comparing the surface term proportional to the first derivative of the tilt angle with the one
proposed long ago by Nehring and Saupe@J. Chem. Phys.54, 337 ~1971!; 56, 5527 ~1972!#. The effective
anchoring being a combination of the external contribution originating from the interaction with the substrate
and the intrinsic anchoring energy resulting from the spatial variation of the scalar order parameter is analyzed.
Matching elastic and magnetic effects on a nematic slab, the corresponding effective extrapolation lengths are
estimated.@S1063-651X~98!00102-0#

PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

In bulk nematic phases intermolecular interactions
sponsible for the nematic order tend to orient molecular lo

axesaW parallel to a common directionnW , called the director
@1#. Therefore, in a slab of nematic material confined
surfaces that impose the same molecular orientation
would expect a homogeneous nematic orientation. In c
trast, some experimental investigations@2–4# show that
liquid-crystal molecules in the surface layer can have an
entation different from that in the bulk material. Also, a litt
more detailed theoretical analysis immediately shows
nontrivial ordering close to the surface is possible. Theo
ical predictions about subsurface deformations have b
published by different groups, mainly in connection with t
splay-bend (K13) elastic constant introduced long ago by N
hring and Saupe@5,6#. Barberoet al. @7# realized that the
inclusion of theK13 term in the Frank elastic energy densi
responsible for deformed ordering close to the surface
quires an additional term proportional to the square of
second derivative of the angle characterizing the nematic
rector field ~second-order elasticity! to prevent its infinite
distortion. In this approach a strong and very localized
finite subsurface deformation of the nematic director field
described in terms of the splay-bend elastic constantK13 and
the effective second-order elastic constantK* @7–10#. Pos-
sible variations of the nematic order are not taken into
count and the scalar order parameter is tacitly assumed t
constant. Although based on elastic theory, this descrip
yields strong subsurface deformations, which raise m
questions@11#. Recent, more detailed macroscopic consid
ations that indicateK1350 @12,13# apparently solve the
problem of strong subsurface deformations in the mac
scopic description, but do not answer the question about
formations on the molecular level@2–4#.

In a completely molecular picture, nematic ordering c
571063-651X/98/57~2!/1780~9!/$15.00
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be deduced only for very limited and simplified system
Recently, it has been shown using a simple lattice model
subsurface deformations can be understood in terms
competition between external and intrinsic anchoring of
liquid crystal on the substrate and that they can be ra
weak if anchoring has a normal strength@14#. A given form
for the intermolecular interaction is supposed and the to
energy is then deduced by summing all the intermolecu
interactions@14–17#. In all these studies a zero-temperatu
approach~perfect nematic order! neglecting the effect of
fluctuations has been used. A conclusion about the existe
of subsurface deformations similar to that in Ref.@14# is
coming from the density-functional approach@18#.

Molecular-dynamics simulations of particles interacti
via a Gay-Berne potential@19# show a substrate-induced sp
tial variation of the nematic scalar order parameter and m
lecular density~smectic ordering! @20–23#. The nematic di-
rector and the scalar order parameter are deduced
averaging molecular quantities. Unfortunately, for compu
tional reasons the number of particles cannot be very lar

The aim of our paper is to analyze the nematic orientat
close to a solid surface using the Landau–de Gennes
nomenological theory@24#. A nematic liquid crystal is de-
scribed with a uniaxial order parameter that incorporates
nematic directornW and the nematic scalar order parameteS
@24#. We show that even if the expansion includes only ter
up to the second power of the first derivatives of the or
parameter, the spatial variation ofS near the bounding walls
yields a subsurface deformation in the nematic director
vice versa. Some of the results limited to the stron
anchoring case have been obtained recently by Vissen
et al. @25# using the same phenomenological approach. F
ther, we show that the variation in order also results in
addition to the anchoring strength, which becomes evid
only if weak anchoring is assumed. Another analysis sim
to Ref. @25#, but without the strong-anchoring assumptio
1780 © 1998 The American Physical Society
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57 1781SURFACE-INDUCED NEMATIC ORDER VARIATION: . . .
has been performed by Teixeiraet al. @26#, studying anchor-
ing transitions in a nematic liquid crystal. However, th
study does not present a reliable method for the determ
tion of the anchoring energy. Therefore, our aim is to pres
a method which we believe is generally convenient.

Our paper is organized as follows. In Sec. II the class
Landau–de Gennes free-energy density is recalled and
number of ‘‘elastic parameters’’ entering into the model
discussed@27#. The quasi-splay-bend elastic constant and
intrinsic anchoring energy due to the spatial variation of
scalar order parameter are deduced in an approximate w
Sec. III. Numerical solutions of the planar variational pro
lem connected with the phenomenological free-energy d
sity written in terms of the scalar order parameters and
tilt angle formed by the nematic directornW and the geometri-
cal normal are presented in Sec. IV. We conclude in Sec

II. LANDAU –DE GENNES PHENOMENOLOGICAL
MODEL

In order to be able to estimate the influence of the c
pling between order-parameter variation and director de
mation we must briefly go through the derivation of t
Landau–de Gennes free energy. A nematic liquid crystal
‘‘quadrupolar’’ material, which is, in the most general cas
characterized by the tensor order parameter@1#

Qi j 5
3

2
SS ninj2

1

3
d i j D13P~ l i l j2mimj ! ~1!

having quadrupolar symmetry. Hereni stands for thei th
component of the director, whilel i andmi are components o
the unit vectors that form an orthonormal triad together w
nW . S is the uniaxial scalar order parameter andP is a scalar
quantity measuring the biaxiality of the nematic. In o
analysis we will, for simplicity, assume the system to
uniaxial and henceP50. We expect that this simplification
will not significantly affect the qualitative character of o
results.

If the nematic is distorted,Qi j is position dependent. Th
free-energy densityf of the nematic is a function ofQi j . If
Qi j changes slowly across the sample, the first spatial der
tives of Qi j are small quantities. In this frameworkf can be
expanded only up to the second order in the derivati
Qi j ,k5]Qi j /]xk @24#:

f 5 f 01
1

2
L1Qi j ,kQi j ,k1

1

2
L2Qi j , jQik,k1

1

2
L3Qi j ,kQik, j ,

~2!

whereL1, L2, andL3 are the ‘‘elastic parameters’’ enterin
the phenomenological model.f 0 , given by@1#

f 05
1

2
a~T2T* !S22

1

3
BS31

1

4
CS4, ~3!

is the free energy of the uniform ground state of the unp
turbed liquid crystal. Expression~3! describes the first-orde
nematic-to-isotropic transition atTc5T* 12B2/9aC. The
Landau coefficients for a typical liquid crysta
~48-pentyl-4-cyanobiphenyl! are a50.133106 J/m3K,
a-
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B51.63106 J/m3, C53.93106 J/m3, and Tc'35.1 °C
@28#. For a deformed statef > f 0 is expected; therefore, in
Eq. ~2! there are no linear terms in the first-order derivati
of Qi j and further all terms quadratic inQi j ,k are assumed to
be positive definite. This yields the restrictionsL1.0 and

L21L3.2 3
2 L1 @24#. Using Eq.~1! and taking into accoun

that nW •nW 51 and hencenini , j50, it is possible to rewritef
given by Eq.~2! as @24#

f 5 f 0~S!1
3

8H F2L11
1

3
~L21L3!G~¹W S!21~L21L3!

3~nW •¹W S!2J 1
9

8
S2$@2L11~L21L3!#~¹W •nW !2

12L1@nW •~¹W 3nW !#21@2L11~L21L3!#@nW 3~¹W 3nW !#2

2~2L11L3!¹W •@nW ~¹W •nW !1nW 3~¹W 3nW !#%

1
3

4
S¹W S•$~2L22L3!nW ~¹W •nW !1~L222L3!nW 3~¹W 3nW !%.

~4!

This expression shows thatf can be divided into three ‘‘elas
tic terms.’’ The first term corresponds to the spatial variati
of S. The second one is the well-known Frank elastic ene
density, which originates in the spatial variation ofnW , includ-
ing the saddle-splay contribution. In this approximation

K115K335
9

4
Sb

2@2L11~L21L3!#, ~5!

K225
9

2
Sb

2L1 , ~6!

K245
9

4
Sb

2~2L11L3!, ~7!

where Sb is the bulk value of the scalar order paramet
Finally, in Eq. ~4! there is a third term connected to th
spatial variation ofS andnW .

Equations ~5!–~7! show that within this approach th
splay (K11) and bend (K33) constants are equal and differe
from the twist (K22) elastic constant. Only in the special ca
L21L350 all three Frank elastic constants have the sa

value K115K225K335K5 9
2 Sb

2L1, while the value of the
saddle-splayK24 elastic constant is still different@see Eq.
~7!#. In this one-constant approximationf is given by

f 5 f 0~S!1
3

4
L1~¹W S!21

9

4
L1S2$~¹W •nW !21@nW •~¹W 3nW !#2

1@nW 3~¹W 3n!#2%2
9

4
L1S2¹W •@nW ~¹W •nW !1nW 3~¹W 3nW !#

2
9

8
L3¹W •$S2@nW ~¹W •nW !1nW 3~¹W 3nW !#%, ~8!

as it follows from Eq.~4!.
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We have rederived the well-known expressions for
Landau–de Gennes free-energy density~4! and for the elas-
tic constants~5!–~7! @24,29#. In the rest of this section we ar
going to show howS variation can induce a distortion of th
director field, studying a slab of nematic liquid crystal b
tween plane parallel substrates and allowing only planar
tortions. In a simple planar case, whereS5S(z) and
nW 5nW (z)5@sinf(z),0,cosf(z)#, f(z) being the angle betwee
nW and the surface normal, Eq.~8! becomes

f 5 f 0~S!1
3

4
L1S821

9

4
L1S2f82, ~9!

where the prime denotes the derivative with respect toz.
Note that in the planar case the last two terms in Eq.~8!
vanish identically. Expression~9! has been considered b
different authors, mainly to describe the influence of the s
tial variation of the elastic constant on the nematic tilt an
profile f(z) @26,30–34#. A simple analysis shows that in th
strong anchoring case, in which values off at both walls of
the nematic slab are the same, theS5S(z) dependence doe
not induce any subsurface deformation. In fact, a minim
of f given by Eq. ~9! corresponds tof850. The spatial
variation ofS can induce an additionalf(z) variation only if
the deformation is already present.

Let us now consider a more general case in wh
L21L3Þ0, whereK115K33ÞK22. In the planar geometry
discussed above the free-energy density given by Eq.~4! has
four terms

f 5 f 0~S!1 f 1~f,S8!1 f 2~f8,S!1 f 3~f,f8,S,S8!,
~10!

introducing three elastic contributions (f 1 , f 2 , f 3). The en-
ergy termf 1 quadratic inS8 depends also onf:

f 1~f,S8!5
3

4
L1H 11

L21L3

2L1
S cos2f1

1

3D J S82. ~11!

The Frank elastic term

f 2~f8,S!5
9

4
L1S2H 11

L21L3

2L1
J f82 ~12!

is similar in structure to the corresponding term in Eq.~9!.
The third part of the free energy

f 3~f,f8,S,S8!52
3

8
~L21L3!sin~2f!f8SS8, ~13!

which is not present in the equal elastic constant ca
couples variations inf and S. If the substrates impose
scalar order parameter different from the bulk one, the f
energyf is no longer minimized by a solution withf850.
Hence a scalar order-parameter spatial dependence, wh
usually localized near the substrates, induces a spatial v
tion of the tilt anglef @25#. The influence off 3 on structural
transitions in nematic liquid crystals has been partially a
lyzed by Je´rôme @35,36#.
e

-
s-

-
e

h

e,

e

is
ia-

-

III. QUASI-SPLAY-BEND ELASTIC CONSTANT
AND INTRINSIC ANCHORING ENERGY

Let us assume that the nematic sample occupies thez.0
half space and that in the planar one-dimensional c
S(0)5S0 andf(0)5f0 are fixed by short-range forces. I
the bulk the value ofS depends only on temperature@Eq. ~3!#
and is denoted bySb . Let us assumeSbÞS0. As is well
known from the Landau theory for nonhomogeneous s
tems,S(z) relaxes toSb over a length that is of the order o
the nematic-isotropic correlation lengthj;AL1 /a(T2Tc)
@24#. This characteristic length, however, does not apply tof
variations since there is no preferred orientation of nem
moleculesfb in the bulk of the sample, which would b
analogous toSb . Bulk f variations, i.e., bulk elastic defor
mations, caused by external fields or confinements, oc
usually over a scale considerably larger thanj.

In the following we show that in a nematic layer thic
compared toj it is possible to include a spatial variation o
the scalar order parameter in two additional surface ene
terms, one corresponding to an intrinsic anchoring and on
a quasi-splay-bend elastic term. To show this we have
consider the second and the fourth terms off defined in Eq.
~10!. The total energies per unit surface connected to th
contributions are given by

W5E
0

`

f 1~z!dz, ~14!

G5E
0

`

f 3~z!dz. ~15!

From Eqs.~11! and ~14! we obtain

W5
3

4
L1H 11

L21L3

2L1
S cos2f~z* !1

1

3D J l^S82&, ~16!

where

^S82&5
1

lE0

l

S82dz, ~17!

l being of the order of a few coherence lengthsj. In Eq.
~16! z* is an effective distance in the range (0,l). Sincel is
a mesoscopic length,W can be considered as an addition
surface energy whose anisotropic part

f s5
1

2
Wicos2f~z* ! ~18!

can be interpreted as intrinsic anchoring with a strength
fined by

Wi5
3

4
uL21L3ul^S82&'

3

4
uL21L3u

~Sb2S0!2

l

5
uK112K22u

3l
S 12

S0

Sb
D 2

, ~19!

assuming that̂S82&'(Sb2S0)2/l2 and taking into accoun
Eqs.~5! and~6!. The sign ofL21L3 determines the direction



d

l

n
e
d

n

b

io
e

-
rd

at

b

tio

w

a
la

so-
ec-
by

to
ve

to
we
the
le.

-

ve
und-
an

tic
ase.
rgy

rm

four
t a
r a

e-

ilt

57 1783SURFACE-INDUCED NEMATIC ORDER VARIATION: . . .
of the easy axis, while the anchoring strengthWi is propor-
tional just to the modulus ofL21L3. The Kléman–de
Gennes extrapolation lengthl i5K11/Wi @1# is then given by

l i'
3K11

uK112K22u
S Sb

Sb2S0
D 2

l ~20!

and depends strongly on the differenceSb2S0.
Also the integral~15! of the term coupling the order an

angle variations can be rewritten in an effective form

G52
3

16
~L21L3!~Sb

22S0
2!@sin~2f!f8#z** , ~21!

taking into account thatS(z) is a monotonic function, as wil
be shown in Sec. IV. The product sin(2f)f8 is taken at some
intermediate distancez** . Since 0,z** ,l, G can be con-
sidered as an effective surface contribution having the fu
tional form of the splay-bend elastic term introduced by N
hring and Saupe@5,6#. The corresponding quasi-splay-ben
elastic constant is equal to

K̃1352
3

8
~L21L3!~Sb

22S0
2!5

K222K11

6
F12S S0

Sb
D 2G . ~22!

It should be stressed thatG is only effectively a surface term
and cannot produce any divergent subsurface deformatio
in the case of the ordinaryK13 term. Essentially, it is a bulk
term effective only in a thin layer of thicknessl. Therefore,
theG term-induced subsurface deformations are stabilized
the bulk elastic termsf 1 @Eq. ~11!# and f 2 @Eq. ~12!#. The
detailed director profile, which requires a complete solut
of the free-energy minimization procedure, will be discuss
in Sec. IV.

The intrinsic anchoring strengthWi given by Eq.~19! and
a quasi-K̃13 given by Eq. ~22! are both temperature
dependent because both the bulk value of the scalar o
parameterSb and the lengthl}j exhibit rather a strong
temperature dependence on approaching the nem
isotropic phase transition.

According to the pseudomolecular model proposed
Vertogen, Flapper, and Dullemond@37,38# it is possible to
evaluate elastic constants if the interparticle interactionU
responsible for the nematic phase is known. The interac
energy for two molecules atRW andRW 85RW 1rW, whose orien-
tations are nW 5nW (RW ) and nW 85nW (RW 8) is U5U(nW ,nW 8,rW)
5U(nW •nW 8,nW •uW ,nW 8•uW ), where uW 5rW/r . In the framework of
Vertogen, Flapper, and Dullemond’s model it can be sho
that if U depends only on the relative position ofnW with
respect tonW 8, but not on nW •uW and nW 8•uW , the relations
K115K225K33 andK1350 hold @39#. This is in accordance
with our result that the quasi-K̃13 also vanishes for
K115K22.

IV. NUMERICAL SOLUTION
OF THE VARIATIONAL PROBLEM

In the approximate analysis presented above we h
shown that the effect of the spatial variation of the sca
c-
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order parameter is equivalent to an additional intrinsic ani
tropic part of the surface anchoring energy and to an eff
tive elastic term similar to the splay-bend term introduced
Nehring and Saupe. We have assumed thatS5S(z) is a
monotonic function, which, over a distance comparable
few j, approaches its bulk value. In this framework we ha
shown that anS5S(z) induces af5f(z), localized in a
region where theS variation occurs, but we were not able
estimate the magnitude of the distortion. In this section
solve numerically the variational problem connected to
minimization of the total free energy of the nematic samp
We choose a nematic slab of thicknessd with the confining
surfaces atz56d/2 ~Fig. 1!. Again the deformation is as
sumed to be planar.

To solve the minimization problem we first have to deri
the Euler-Lagrange equations and the corresponding bo
ary conditions. The total free energy to be minimized c
then be written as

F5E
V

f B„f~z!,f8~z!,S~z!,S8~z!…dV

1E
S
f S„f~6d/2!,f0 ,S~6d/2!,S0…dS, ~23!

where f B5 f 01 f 11 f 21 f 3 and f S are the bulk and surface
free-energy densities, respectively, whilef0 and S0 denote
the substrate-induced values off andS. The surface contri-
bution f S arising from the interaction between the nema
and the substrate is nonzero only in the weak-anchoring c
In the presence of an external field also the field ene
contribution must be added tof B .

In our case the Euler-Lagrange equations have the fo

] f B

]f
2

d

dz

] f B

]f8
50, ~24!

] f B

]S
2

d

dz

] f B

]S8
50 ~25!

and are both of the second order. Hence there must be
boundary conditions for the above equations to presen
well-defined system. In the strong-anchoring case and fo
symmetric sample these readf(6d/2)5f0 and
S(6d/2)5S0, while in the weak-anchoring case they b
come

FIG. 1. Slab of nematic liquid crystal; the definition of the t
anglef(z).
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6S ] f B

]f8
D

z56d/2

1
] f S

]f~6 d
2 !

50, ~26!

6S ] f B

]S8
D

z56d/2

1
] f S

]S~6 d
2 !

50. ~27!

The system~24!–~27! has been solved numerically by mea
of the relaxation method for boundary-value problems@40#.
We will first consider the case with infinitely strong ancho
ing and then continue with a more general case with an
bitrary strength of anchoring.

A. Strong-anchoring case

In the strong-anchoring limit at the confining surfaces
scalar order parameterS is fixed toS0 by surface treatment
while in the bulk it takes the temperature-determined va
SbÞS0. Further, the surface tilt anglef(6d/2) is fixed to
f0. Although the actual surface tilt does not vary,S variation
induces a subsurface deformation. Some examples of d
tor and scalar order-parameter profiles are shown in Fig
and 3. TheS variation occurs in a layer whose thickness
;10 nm, which is indeed of the order ofj, as predicted by a
rough estimate in Sec. III. In this region also the variation
f, i.e., a subsurface deformation, occurs. We find that
amplitude of the resulting deformationDf, defined as
Df5fb2f0 (fb being the bulk tilt angle!, is proportional
to the above-introduced quasi-K̃13 elastic constant, similar to
the case of normalK13 elastic constant. If the amplitude o
the S variation ~i.e., Sb2S0) is small enough to neglect th
variation of the Frank elastic constantK}Sb

2 close to the

FIG. 2. Director and scalar order-parameter profiles in
strong-anchoring case;f050.1(180°/p)'5.73°, Sb'0.3747,
S050.35, andL21L351L1,0,2L1 ~casesa, b, and c, respec-
tively!. The sample thickness is equal tod51 mm.
r-

e

e

c-
2

f
e

interface, the same relation as for the ordinaryK13 may be
used to approximately predict the deformation amplitudeDf
@41#:

Df'2
K̃13

2K
sin2f~6d/2!. ~28!

Note that whereas the deformation stabilization in Ref.@41#
is governed by second-order elasticity, it is here by
positive-definite termsf 1}S82 and f 2}f82 introduced in
Sec. II.

The quasi-K̃13 elastic constant given by Eq.~22! depends
on bothL21L3 and the difference between the bulk and t
surface scalar order parameter. The numerical solutions
firm that if L21L3 changes sign, the deformation amplitud
Df}K̃13 changes sign as well. IfL21L350, the subsurface
deformation vanishes andDf50. Further, the change in
sign of Df occurs if the sign ofS02Sb is changed. From
Figs. 2 and 3 it can be deduced that also the character
length of the subsurface distortion depends onL21L3. In
comparison to cases with negativeL21L3, positiveL21L3
yield larger proportionality constants in the stabilizing term
f 1 and f 2 @see Eqs.~11! and ~12!#, which means that stabi
lization effects for L21L3.0 are stronger than fo
L21L3,0. Hence the corresponding deformations a
weaker, i.e., occurring over a larger distance and hav
smaller amplitude, the former holding for bothf andS pro-
files, while the latter is true forf profiles only sinceSb2S0
is fixed if anchoring is strong.

B. Weak-anchoring case

Let us now consider a more realistic nematic-surface c
pling, i.e., an anchoring situation where actual surface val
S(6d/2) andf(6d/2) are allowed to vary. Any deviation

e FIG. 3. Director and scalar order-parameter profiles in
strong-anchoring case; all the parameters are equal to those o
2, exceptS050.4.
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57 1785SURFACE-INDUCED NEMATIC ORDER VARIATION: . . .
of these values from the surface-induced ones (S0 and f0,
respectively! is penalized with an increase of the anchori
energy. This short-range interaction energy is usually m
eled as a contribution to the surface free energy expresse
powers of the tensor order parameterQi j . Here we use@42#

WS5
1

2
We~Qi j 2Qi j

0 !2 ~29!

with Qi j
0 as the tensor order parameter corresponding to

face preferred values ofS andnW ~and consequentlyf) and
We related to the corresponding substrate~external! anchor-
ing strength. Taking into account expression~1!, Eq. ~29!
reads

WS5
9

8
WeF2

3
@S~6d/2!21S0

2#22S~6d/2!

3S0S cos2@f~6d/2!2f0#2
1

3D G . ~30!

Note that if there is noS variation, Eq.~30! reduces to the
standard Rapini-Papoular expression WS
}2cos2@f(6d/2)2f0# @43#, while in cases without elastic
distortion @f(6d/2)5f0# it has the form WS
}@S(6d/2)2S0#2. In the most general case, however,S and
f variations are coupled in the anchoring energy~30!. The
weak-anchoring case has been considered previously in
@32# in the one-constant approximation, in which the qua
splay-bend elastic constant is identically zero. Now we sh
generalize this analysis by allowingL21L3Þ0.

The same Euler-Lagrange equations as in the stro
anchoring case have been solved, however, with modi
boundary conditions. As the actual surface tilt angle is
fixed anymore, effects ofS-variation-induced intrinsic an
choring can now be revealed. The easy axis for this intrin
anchoring contribution can be either planar~for L21L3.0)
or homeotropic~for L21L3,0), as it follows from Eq.~16!.
The calculated director profiles confirm this predictio
which is evident from Figs. 4 and 5: forL21L3,0
f(6d/2),f0 and forL21L3.0 f(6d/2).f0. The sub-
surface deformation is still present and behaves in the s
manner as in the strong-anchoring case. However, suppo
the sameSb andS0, it is weaker than in the strong-anchorin
case sinceuSb2S(6d/2)u,uSb2S0u.

It should be stressed that molecular models mentione
Sec. III, where, for instance, the intermolecular interaction
described as a superposition of the Maier-Saupe and
induced-dipole–induced-dipole coupling, yieldL21L3,0,
i.e.,K11,K22 @39#, which corresponds to a homeotropic ea
axis in our study. Thus we are going to restrict further d
cussion only to cases withL21L3,0.

C. Determination of the extrapolation length

A suitable method to estimate the strength of effect
anchoring is to investigate its competition with magnet
field effects @14#. Therefore, we add the magnetic ener
term @1#
-
in

r-

ef.
i-
ll

g-
d
t

ic

,

e
ing

in
s
he

-

e
-

f m52
1

2
m0xa~nW •HW !252

1

2
m0xaH2cos2@f~z!2a#

~31!

to the bulk free-energy density~10!. Here H denotes the
strength of the magnetic fieldHW directed at an anglea with
respect to the surface normal,m0 the permeability of the

FIG. 4. Director and scalar order-parameter profiles in the we
anchoring case;we510, f050.1(180°/p)'5.73°, Sb'0.3747,
S050.2, and L21L351L1,0,2L1 ~casesa, b, and c, respec-
tively!. The sample thickness is equal tod51 mm.

FIG. 5. Director and scalar order-parameter profiles in the we
anchoring case; all the parameters are equal to those of Fig
exceptS050.5.
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1786 57SKAČEJ, ALEXE-IONESCU, BARBERO, AND Zˇ UMER
vacuum, andxa the macroscopic anisotropy of the magne
susceptibility, which is proportional to the scalar order p
rameterS.

Director and scalar order-parameter profiles are again
culated by solving the Euler-Lagrange equations, which
now different from those in Secs. IV A and IV B due to th
additional magnetic contribution to the bulk free energy. T
influence of subsurface deformations on the large-scale
rector profile enters only via the effective intrinsic anchori
contribution. Therefore, ignoring the thin subsurface laye
which the subsurface deformation occurs, we can for smaf
fit the calculated director profiles by the ansatz@see Figs.
6~a!–6~c!#

FIG. 6. Calculated director profiles~dots! in the magnetic field
compared with the hyperbolic cosine fit~solid line!: we55,
L21L352L1, Sb'0.3747, andS050 @cases~a! and~b!; no exter-
nal anchoring# or S050.5 @case~c!; external anchoring favoring
homeotropic alignment (f050°) is present#. The sample thickness
is equal to d51 mm, the magnetic field direction
a50.1(180°/p)'5.73°. The magnetic-field strengths expressed
terms of the coherence lengthjm amount to' 65 nm, 90 nm, 205
nm, 290 nm, 650 nm, and 920 nm, the first value correspondin
the top and the last to the bottom curves of~a! and~c!. Comparing
cases~a! and~c!, it is evident that the external anchoring is cons
erably stronger than the intrinsic one.~b! presents the enlarged se
tion of ~a! that is marked with a dashed line.
-

l-
re

e
i-

n

f~z!5a1A
cosh~z/jm!

cosh~d/2jm!
, ~32!

the parameterA being related to the amplitude of the defo
mation, d the sample thickness, andjm the characteristic
length of this field-induced deformation, i.e., the magne
coherence lengthjm5AK/m0xaH2 @1#. Figure 6~b! shows
the enlarged subsurface region of Fig. 6~a!, in which the
ansatz~32! describing the macroscopic director profile fa
to match the calculated profile. Since this region is of mic
scopic thickness~few nanometers!, it will be neglected in the
determination of the anchoring strength, as already sta
above.

If f0 is the direction favored by the effective anchorin
the parameters of the fit (A,jm) for small f02a yield the
effective extrapolation length@14#

l e f f5
K

We f f

5Ff02a

A
21GjmcothS d

2jm
D . ~33!

This anchoring is a superposition of the intrinsic and exter
contribution. From the analysis performed in previous s
tions it is possible to estimate the extrapolation lengths
both sources of anchoring separately. For intrinsic ancho
we can rewrite Eq.~20! using Eqs.~5! and ~6! as

l i5
3Sb

2

@Sb2S~6 d
2 !#2U 2L1

L21L3

11Ul. ~34!

Providedl is known, we can, using Eq.~33!, compare this
approximate value with the ‘‘measured’’ one. Similarly, it
possible to derive an estimate for the external anchoring
trapolation length l e5K11/WE . The external anchoring
strengthWE can be deduced from Eq.~30! and is given by

WE5 9
2 WeS(6d/2)S0, while the elastic constantK11 is still

given by Eq.~5!. In terms of the dimensionless anchorin
strengthwe5Wed/L1 , the lengthl e can be expressed~for
S0Þ0) as

l e5
Sb

2

weS0S~6 d
2 !

F11
L21L3

2L1
Gd. ~35!

Assuming that both intrinsic and external anchoring have
same easy axis~e.g., homeotropic!, the effective anchoring
strength can be written asWe f f5Wi1WE . Then for the cor-
responding extrapolation lengths the relation

1

l e f f

5
1

l i

1
1

l e

~36!

holds. If, e.g.,l e! l i , then l e f f' l e .
Let us consider a nematic slab confined by two substa

treated by SiO-evaporation technique, for whichS050 can
be assumed. In this case the angular dependence in Eq.~30!
vanishes and hence the external anchoring in the Rap
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Papoular sense is absent. The choiceS050 enables us there
fore to investigate pure intrinsic anchoring, althoughweÞ0
and thus simplifies the analysis significantly.weÞ0 is, how-
ever, necessary to yieldS(6d/2)ÞSb , which is required for
intrinsic anchoring to occur at all. However, in addition
studying cases withS050, it will be instructive to consider
also those withS0Þ0 in order to see the increase of th
effective anchoring strength when external anchoring
present as well.

Director andS profiles in the magnetic field have bee
calculated for different values of the field strengthH, the
surface-imposed order parameterS0, and the anchoring
strengthwe ~the examplewe55 is given in Fig. 6!. In all
casesL21L352L1 holds, which means thatK11,K22 and
yields a homeotropic easy axis for the intrinsic anchori
The Landau parametersa,B,C and the temperature wer
chosen such thatSb;0.3747. The estimates for the measur
effective extrapolation length are given in Table I. The
sults forS050 show that if the coupling with the surface h
a strengthwe<50, the intrinsic anchoring is rather wea
( l i.100 nm!. Its strength increases with increasingwe as
Sb2S(6d/2) increases, which is in agreement with formu
~34!. However, ifS0Þ0, the external contribution to the an
choring is nonzero as well and is, forS050.5, e.g., consid-
erably stronger than the weak intrinsic part@compare Figs.
6~a! and 6~c!#. Consequently, leaving other parameters u
changed, the effective extrapolation length decreases sig
cantly in comparison to theS050 case, and now onlywe,5
yields extrapolation lengths of the order of those obser
experimentally (.100 nm!. Since the external contributio
to the effective anchoring seems to completely overwhe
the intrinsic one, we cannot expect to observe a
temperature-driven anchoring transitions due to their com
tition.

Comparing the predicted values forl e in cases with
S050.5 @Eq. ~35!# and the measured effective ones@Eq.
~33!#, very good agreement is observed~see Table I!, which
again shows that in these cases the intrinsic anchorin

TABLE I. Effective anchoring extrapolation lengthsl e f f com-
pared with the valuesl i and l e , predicted for intrinsic and externa
anchoring, respectively. All estimates forl e f f with S050 refer to
pure intrinsic anchoring, while the ones withS050.5 refer to a
superposition of intrinsic and external anchoring, where the la
prevails. Easy axes for both kinds of anchoring are homeotro
The angle between the magnetic field direction and the surface
mal is equal toa50.1(180°/p)'5.73°, the bulk value of the orde
parameter toSb'0.3747, and the sample thickness tod51 mm.

we S0 S(6d/2) l i l e ~nm! l e f f ~nm!

1 0 0.3720 5.83104 l 43105

1 0.5 0.3756 53105 l 374 375
5 0 0.3613 2.353103 l 1.673104

5 0.5 0.3791 2.23104 l 74 75
10 0 0.3484 610l 4.33103

10 0.5 0.3832 5.83103 l 37 37
50 0 0.2606 33l 205
50 0.5 0.4072 400l 7 7
100 0 0.1861 12l 63
100 0.5 0.4255 160l 3 3
s

.

-

-
ifi-

d

y
e-

is

negligible with respect to the external one. Further, sett
S050 and considering the intrinsic anchoring alone, t
agreement of predicted@Eq. ~34!# and measured values ofl i

can be achieved by settingl'627 nm, which is compa-
rable to the thickness of the layer in which theS and f
variations occur in the absence of the magnetic field. N
also that in all cases the deformation strength of the sub
face deformation is rather small. For instance, forwe55 and
S050.5, yielding a still reasonable extrapolation length, a
close tof05p/4 we obtaindf/dz;331024!1/r0 (r0;1
nm being the molecular dimension!, as required by the elas
tic continuum theory. In this case also the variation of t
order parameter is rather weak, i.e.,@S(6d/2)2Sb#/Sb

;0.01. Cases with lowerwe yield an even smaller deforma
tion strength.

V. CONCLUSION

In contrast to the well-knownK13-term-related subsurfac
deformations of the director field, we study here the mu
less known effect of the variable order parameter. A nem
liquid crystal in the slab geometry is treated using t
Landau–de Gennes phenomenological theory, allowing b
order and tilt angle variations. If surface and bulk values
the scalar order parameter are different and if an approxi
tion with more than one constant is used, an intrinsic con
bution to the anchoring energy is predicted. Although t
free energy was expanded only up to first derivatives,
coupling between the order and tilt angle variations indu
subsurface deformations similar to those caused by the o
naryK13 term within the second-order elastic theory@7#. The
characteristic range of deformation is of the order ofj
~nematic-isotropic correlation length!. In the analysis both
strong- and weak-anchoring cases were treated. In the l
case the effective anchoring strength was estimated using
competition of the magnetic field and anchoring effects. T
effective anchoring consists of the intrinsic and the exter
contribution, the external being present only if the sca
order parameter imposed by the substrate is nonzeroS0
Þ0). Considering cases withS0Þ0 and with an effective
extrapolation length larger than;100 nm, as experimentally
observed for typical substrates, the intrins
S-variation-induced anchoring contribution is shown to
considerably weaker than the external one. Forl e f f;100 nm
the accompanying subsurface deformation and theS varia-
tion are small, e.g., df/dz;331024/r0 and
@S(6d/2)2Sb#/Sb;0.01. It should be clearly stressed th
the described phenomenological continuous approach ca
explain peculiarities in the orientation of molecules observ
by Shen and co-workers@2–4# in the first molecular layer,
which is in direct contact with the substrate.
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